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The estimation of weights is quite an important aspect of the

restrained re®nement of macromolecular structures and

related procedures such as the estimation of coordinate errors

and structure validation using geometrical criteria. In

principle, the method of maximum likelihood can be used

for estimation of both atomic and weighting parameters.

However, the low observation-to-parameter ratio in macro-

molecular re®nement makes this kind of estimate of weighting

parameters seriously biased; thus, the weighting parameters

have traditionally been estimated separately from atomic

parameters using a special technique, such as minimizing the

free R factor. However, the variance of the latter estimate is

large, as only a small portion of all data is used. In this work,

an estimator of weights is proposed which is based on an

approximation of a marginal likelihood function of the

weighting parameters and which uses all the X-ray data.

There is a known true value for the overall scaling coef®cient

for distance variances in restrained re®nement and therefore

the (maximum-likelihood) estimator for this coef®cient may

be used as a validation statistic.
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1. Introduction

The problem of validating protein structures solved by X-ray

crystallography has been widely investigated during the last

decade (Dodson, 1998; Kleywegt, 1999, 2000). This problem

has become even more relevant with the rapidly growing

number of structures in the Protein Data Bank (PDB; Bern-

stein et al., 1977; Berman et al., 2002) and with the develop-

ment of highly automated methods of structure determination

(Perrakis et al., 1999; Morris et al., 2002), a constituent of high-

throughput protein crystallography.

One of the validation criteria is the consistency of covalent-

bond parameters with those obtained from previously solved

structures. In the case of unrestrained re®nement, the average

weighted geometrical residual RG is a statistic with known

expected value E(RG) and variance. However, in re®nements

with geometrical restraints, the equation E(RG) = 1 transforms

into the inequality E(RG) < 1 (Tickle et al., 1998a) and E(RG)

depends on the variable weighting parameters in the X-ray

partition of the covariance matrix. Badger & Hendle (2002)

have found that root-mean-square deviations from ideality for

bond lengths and bond angles appear to be unrelated to both

the estimate of the overall accuracy of a structure given by the

diffraction-component precision index (DPI; Cruickshank,

1999) and the number of local errors that the molecular model

contains.
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Several applications make use of the correlation between

Rfree and the phase accuracy of a crystal structure. BruÈ nger

(1992a) has shown that the Rfree method can be used to

optimize the overall weighting between diffraction data and

chemical restraints in crystallographic re®nements. Examples

of the implementation of this idea can be found in BruÈ nger

(1992b) and Murshudov et al. (1997). The overall weight of the

restraints is a special case of the more general weights that

apply to subsets of diffraction data or particular classes of

restraints, such as bond lengths, bond angles and dihedral

angles. BruÈ nger (1993) optimized Rfree as a function of all

these individual weights using the penicillopepsin crystal

structure at 1.8 AÊ resolution as a test case and demonstrated

that the uncertainties in bond lengths and bond angles derived

from small-molecule crystal structures (Engh & Huber, 1991)

appear to be applicable to macromolecules. This conclusion

follows from the fact that the optimized weights wb and wa for

bond-length and bond-angle terms, respectively, are close to

one. From the point of view of structure validation, it is a

notable fact because it means that in principle the validation

criterion E(RG) = 1 can be replaced in restrained re®nement

by the criterion E(wb,a) = 1, where wb,a is the weight of a joint

term involving bond-length and bond-angle restraints. The

optimization problem under discussion is computer-intensive,

as each point in the multi-dimensional space of weighting

coef®cients requires a complete round of re®nement to eval-

uate Rfree. However, the major problem is that the variances of

the estimates of weights are unlikely to approach the CrameÂr±

Rao lower bound (CrameÂr, 1946; Leonard & Hsu, 2001), as

only a small part of experimental information is used in this

estimation.

The free R factor is also used as a validation statistic itself. It

is certainly useful for judging protocols and progress in

re®nement. It is particularly valuable as a tool for detecting

over®tting (Dodson et al., 1996; BruÈ nger, 1997). However, a

rigorous validation test requires knowledge of the distribution

of the tested statistic. In a more relaxed but often acceptable

approach, one has to know the value of the statistic calculated

for a given data set together with estimates of the mean and

variance of the statistic. Tickle et al. (1998b) derive the

expected value of the free residual from which estimates of the

expected values of both Rfree and the ratio Rfree/R are calcu-

lated. The work is taken further in Tickle et al. (2000), where

the variation of the above ratio about its expected value is

explored. In these papers, the estimates of the expected values

and variances are derived on the assumption that the weights

used in structure re®nement correctly re¯ect the errors. Thus,

the practical implementation of this approach requires reliable

estimates of weights.

In contrast to the method of least squares, the method of

maximum likelihood takes into account the probability

distribution of observations and may perform better than

least squares if this distribution is not normal. The normal

distribution can be, in a ®rst approximation, attributed to the

distribution of structure factors in the complex plane

(Luzzati, 1952; Srinivasan & Ramachandran, 1965). The

marginal distribution density of structure amplitudes corre-

sponding to this approximation is known in crystallography

as the Sim (Sim, 1959) or Rice distribution (Bricogne, 1988).

The latter is suf®ciently simple to handle and is the basis

for the implementation of the method of maximum likelihood

in the macromolecular re®nement. Bricogne & Irwin (1996),

Pannu & Read (1996) and Murshudov et al. (1997) ®nd

that compared with least-squares re®nement, maximum-

likelihood re®nement can achieve a considerable improve-

ment in average phase error. The resulting electron-density

maps are correspondingly clearer and suffer less from model

bias.

Along with the atomic parameters, a number of parameters

appear in the method of maximum likelihood that are linked

to the probabilistic model used to describe the distribution

of structure factors. These parameters generalize the weights

of the X-ray terms in the method of least squares and are

therefore further referred to as weighting parameters. Just

as in the case of restrained least-squares re®nement,

estimation of weighting parameters in the method of

maximum likelihood is a complicated problem. Lunin &

Urzhumtsev (1984) observe that the accuracy of phases

obtained from models re®ned using likelihood targets is

overestimated. Read (1986) ®nds that the use of maximum-

likelihood estimators for weighting parameters results in

systematically overestimated ®gures of merit but only within

the resolution limits used in the re®nement of atomic coor-

dinates. Lunin & Skovoroda (1995) and BruÈ nger (1997) show

that the use of the likelihood function calculated from the free

set of re¯ections allows one to eliminate the bias. Skovoroda

& Lunin (2000) suggest a method for reducing the statistical

dispersion of the estimates based on a small number of free

re¯ections.

The work described in this paper demonstrates that

weighting parameters and, in particular, the weight of

geometrical term wb,a can be estimated without signi®cant

bias using an approximation of a marginal likelihood function

of all the observed data. As we discussed earlier, the weight

of the geometrical term has a known expected value that

equals one and it can be proposed as a potential validation

statistic.

2. Model of experiment

The re®nement of macromolecular structures is a statistical

problem with a strong prior knowledge of stereochemical

parameters. We are particularly interested in the parameters

that have well determined variances, i.e. in the covalent-bond

and covalent-angle distances. This is because we seek to

determine whether the model structure proposed is consistent

with these known variances.

The above prior knowledge is formally expressed in terms

of target interatomic distances provided in a dictionary

containing means and variances of the distances that are

derived from a database of small molecules (Engh & Huber,

1991).



2.1. Sampling model

Let x, u and f o be the vector of atomic parameters, the

vector of weighting parameters and the vector of experimental

data, including the stereochemical data, respectively.1

As long as we consider geometrical data as observations, the

prior knowledge associated with them is already accounted for

and therefore it is valid to assume that atomic parameters are

sampled from a uniform prior density,

p�xju� � p�x� � constant: �1�
The prior probability distribution density (1) is an improper

prior (Lindley, 1965), which is the limiting case of densities,

uniform on an in®nitely growing range of the parameters.

The experimental uncertainties and the features of electron

density which are not accounted for by the atomic model are

described by the conditional density p(f o|x, u). The marginal

density function of f o conditioned by the weighting para-

meters is given by

p�f oju� � R p�f ojx; u� p�xju� dx: �2�
Formally, the integration in (2) is over all possible x, but the

dominant contribution to the integral comes from the values

of x that are close to the sharp maximum of the likelihood

function p(f o|x, u).

The numerical experiments carried out in this work deal

with the case where the relative values of true atomic

temperature factors are either known (tests with simulated

data) or are assumed to be known (tests with real data). Thus,

the vector x includes atomic coordinates plus two overall

parameters, namely a temperature factor and a structure-

amplitude scale factor.

2.2. Model of mean and covariance

Let F be a parametric family of random vectors with the

parameters x and u, such that any random vector f o 2 F of the

family satis®es the following relations

E�f ojx; u� � f �x�
E�f of oT jx; u� � f �x�f �x�T ���u�; �3�

i.e. components of x are parameters of the mean vector f(x)

and components of u are parameters of the covariance matrix

�(u) of the random vector f o.

The X-ray data are divided into P bins according to some

reasonable criteria, for instance resolution and/or intensity, so

that we can assume that the observed structure amplitudes

from the same bin have the same variance. Also, we assume

that all observations, including both X-ray and distance data,

are independent and therefore the covariance matrix is diag-

onal. Thus,

��u� �
u0�0 0 � � � 0

0 u1�1 � � � 0

� � � � � � � � � � � �
0 0 � � � uP�P

0BB@
1CCA; �4�

where �0 is the diagonal distance covariance matrix deter-

mined from a dictionary of experimental small-molecule data

and �1, �2, . . . , �P are the unit matrices of appropriate

dimensions. The scalar u0, the overall scaling coef®cient for

distance variances, and scalars u1, . . . , uP, the variances of

structure amplitudes from bins 1, 2, . . . , P (reciprocal

weights), constitute the vector of weighting parameters

u = (u0, u1, . . . , uP)T.

Accordingly, the random vector fo and the mean vector f(x)

have P + 1 partitions:

f o �
f o

0

f o
1

� � �
f o

P

0BB@
1CCA �5�

and

f �x� �
f0�x�
f1�x�
� � �

fP�x�

2664
3775; �6�

where f0(x) is the vector of calculated distances and f1(x), . . . ,

fP(x) are vectors of calculated structure amplitudes from bins

1, . . . , P.

We suppose that our data are sampled from a random

vector that belongs to the family F. If fo is this random vector,

then the components of x and u in (3) are the true values of

atomic and weighting parameters, respectively. Given the

observed value of f o, we need to estimate these true values of x

and u.

Note that the problem is formulated in such a way that u0 is

a known constant:

u0 � 1: �7�
However, if we let u0 be an unknown parameter, then any

unbiased or insigni®cantly biased estimator for u0 is a vali-

dation statistic, provided that the variance of the estimator can

also be estimated.

3. Maximum-likelihood estimators for weighting
parameters

Our goal is to understand how good the method of maximum

likelihood is for the determination of weights in macro-

molecular re®nement and, particularly, for the validation of

the structure using (7). It is essential for us that the variances

of likelihood estimators can be estimated using the second

derivatives at the maximum of the likelihood function.

We base our discussion on the comparison of two log-

likelihood functions, both corresponding to the distribution

density of the random vector fo, the ®rst being conditioned by

the vector of atomic parameters x and the vector of weighting
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1 Associated with any of the parameters of any Bayesian model of an
experiment are a random variable, a sampled value(s) and a formal variable of
the probability distribution density. Dependent on the context, the sampled
value is a true value or an observed value. Similar objects are associated with
functions of the parameters, including estimators. To avoid the abuse of
notation we use one-letter notations, the actual sense of the letter being
obvious from the context. This is effectively the usual practice.
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parameters u and the second being conditioned only by the

vector of weighting parameters u. In this paper, we compare

these two likelihood functions using a number of simulated

data sets corresponding to a small synthetic crystal structure.

The better of the two likelihood functions is then used to

estimate the parameters of the geometry and structure-

amplitude variances using three real polypeptide structures.

3.1. Definitions of likelihood functions

Let L(x, u) be the log-likelihood of atomic parameters x and

weighting parameters u given the vector of observations fo, i.e.

L�x; u� � ln l�x; ujf o� � ln p�f ojx; u�: �8�
In the likelihood maximization we have assumed the density

p(f o|x, u) to be normal, i.e.

L�x; u� � ÿ 1
2�f o ÿ f �x��T��u�ÿ1�f o ÿ f �x��
ÿ 1

2 ln�det ��u�� � constant: �9�
This simpli®ed likelihood is however suf®cient to illustrate our

ideas. Our tests show that there are some other factors that

in¯uence the behaviour of estimators for weighting para-

meters much more than the choice of likelihood approxima-

tion.

Let M(u) be the following function of u,

M�u� � L�t�u�; u� � 1
2 ln�det ��u��; �10�

where

��u� � @f �x�
@x

T

��u�ÿ1 @f �x�
@x

���
x�t�u�

� �ÿ1

�11�

and where the vector-function t(u) is such that for a given

value of u it maximizes L(x, u) with respect to x, thus

@L�x; u�
@x

���
x�t�u�
� 0: �12�

Neglecting the term independent of u, the function M(u)

approximates the marginal log-likelihood of u given fo:

M�u� � ln l�ujf o� � ln p�f oju�: �13�
Using (1), (2), (8), (10), (11) and (12), one can check that

approximation (13) becomes an exact equation if the condi-

tional distribution of fo given x and u is multivariate normal

(9) and f(x) is a linear function of x.

3.2. Definitions and comparison of estimators

Let (x̂; û) and ~u maximize the log-likelihood functions

L(x, u) and M(u), respectively. Consequently,

@L�x; u�
@x

���
u�û;x�x̂

� 0

@L�x; u�
@u

���
u�û;x�x̂

� 0

8><>: �14�

and

@M�u�
@u

���
u� ~u
� 0: �15�

(14) and (15) are likelihood equations and the random vectors

(x̂; û) and ~u are maximum-likelihood estimators corre-

sponding to the log-likelihood functions L(x, u) and M(u),

respectively.

Note that (12) and (14) imply that

@L�t�u�; u�
@u

���
u�û
� 0; �16�

where the maximized function coincides with the ®rst term on

the right-hand side of (10). Therefore, it is the second term in

(10) that is responsible for the difference between ~u and û.

Which is better for estimating u, the partition û of the

maximum-likelihood estimator (x̂; û) or the maximum-

likelihood estimator ~u? The observation-to-parameter ratios

for the two cases give a clear, although heuristic, answer. In

the ®rst case �û), the number of unknown parameters is equal

to the number of atomic parameters (hundreds or many more)

plus the number of weighting parameters (a few dozen or

less). The ratio 10 would be good for macromolecular

re®nement. Only the weighting parameters are unknown in

the second case ( ~u) and therefore the above ratio is hundreds

or thousands. Thus, the behaviour of the estimator ~u is likely

to approach the asymptotic behaviour of maximum-likelihood

estimators, i.e. we would expect that ~u is an almost normally

distributed random variable and an almost unbiased estimator

for u and that the matrix

Z � ÿ @
2M�u�
@uT@u

���
u� ~u

� �ÿ1

; �17�

which is reciprocal to the likelihood information matrix

(Leonard & Hsu, 2001), is a good estimator of the covariance

matrix of ~u, i.e.

E� ~uju� � u

E� ~u ~uT ju� � uuT � E�Zju�: �18�

On the other hand, the computational cost of calculating M(u)

and its derivatives is huge compared with those for L[t(u), u]

owing to the term ln[(det�(u)] (see x6). It is clear that any

practical application would use certain approximations for �
and its derivatives. Nevertheless, we ®rst of all want to be sure

that such efforts are necessary. Maybe the estimator û is

suf®ciently good for practical purposes? Also, in spite of the

above rather intuitive reasoning, ~u might have an un-

acceptable bias even if the exact value of � is used in its

calculation.

4. Numerical experiments

Even in the case of only two weighting parameters considered

below, there is no analytical expression for both û and ~u for the

general case of the matrix @f=@x. (The case of one weighting

parameter is discussed in Appendix A.) Therefore, we address

the questions formulated in the previous section by means of

tests with simulated data, where we know the true values of all

estimated parameters and can estimate bias.



4.1. The case of two unknown weighting parameters

The synthetic model is a crystal structure of a fragment of

an �-helix with the sequence Ser-Val-Val-Ser-Gln in space

group P21, with unit-cell parameters a = 16.2, b = 12.5,

c = 11.1 AÊ , � = 96�. It is assumed that this structure is a true

structure, i.e. its atomic coordinates are the components of the

true value of vector x.

The dimension of the vector x and the dimension n0 of the

vector f0(x) are determined by the model and are 109 and 82,

respectively. The same set of re¯ections in the resolution range

16.1±1.3 AÊ have been used in all simulations. The number of

re¯ections, i.e. the dimension n1 of the vector f1(x), is equal to

901. If we treat restraints as observations, then the observa-

tion-to-parameter ratio equals 9.0, which is a rather large

value for macromolecular crystallography.

We generated a set of size 130 of (n0 + n1)-dimensional

vectors that can be considered as a sample of size 130 drawn

from a population of vectors �, the components of � being

independent random variables with a truncated normal

distribution, with zero mean and unit variance, i.e.

E��� � 0 �19�
and

E�� �T� � E; �20�
where E is the unit matrix.

Using the above sample, we generated a sample of size

130 drawn from one-parameter family of random vectors

f o = f o(u1) given by

f o
0

f o
1

� �
� f0�x�

f1�x�
� �

� u0�0 0

0 u1�1

� �1=2
�0

�1

� �
; �21�

where �0 and �1 are appropriate partitions of the random

vector � and thus (3) holds, where u0 = 1 and thus (7) holds and

where u1 is the variable parameter.

In the description of the results, we use the parameter Re

instead of the parameter u1, the two parameters being related

by

u1 �
�

2

jf1�x�j
tr��1=2

1 �
Re

" #2

; �22�

where |f | denotes the sum of absolute values of components of

a vector f. Therefore,

E jf
o
1 ÿ f1�x�j
jf1�x�j

����x; u

� �
� Re; �23�

where exact equality would hold if the components of � had a

normal distribution. Thus, the parameter Re approximates the

expected value of the R factor between X-ray data f o
1 and the

true structure amplitudes f1(x). The description of the simu-

lated experiment in terms of Re is preferable compared with

that in terms of u1, as the value of Re has a similar meaning and

the same scale as the usual crystallographic R factor.

We solved equations (15) and (16) numerically with respect

to unknown u = (u0, u1)T for the above 130 one-parameter

data-set families at 91 values of Re in the range 2±16%. The

variation of Re models the variation of the quality of experi-

mental data.

We observe a continuous dependence of ~u on Re in all data-

set families (Figs. 1a, 1b, 1e and 1f). Continuous behaviour of û

takes place for 125 of 130 data set families (Figs. 1a and 1b). In

the remaining ®ve data-set families the values of û1 jump and

the values of û0 drop to almost zero (10ÿ4±10ÿ2) at a certain

value of Re. The interatomic distances in these cases almost

coincide with target distances (the zero value of u0 corre-

sponds to a re®nement with constraints). The ®rst disconti-

nuity occurs at Re ' 12% and the frequency of such events

then grows with the increase in Re (see Figs. 1e and f).

Figs. 1(c) and 1(d) represent the totals for data-set families

with continuous behaviour of both ~u and û. On each of these

plots there are ®ve red and ®ve blue lines corresponding to ~u
and û, respectively. The middle line of a particular colour is the

sample mean. The two lines adjacent to it are the sample mean

� the standard uncertainty (s.u.; Schwarzenbach et al., 1995)

of the sample mean. The uppermost and lowermost lines are

the sample mean � the s.u. These ®gures clearly demonstrate

that ~u, in contrast to û, is a practically unbiased estimator of

the unknown weighting parameters.

The changes of û0 and û1 with Re indicate that bias cannot

be removed by simple multiplication of the covariance by a

constant coef®cient, as is the case where there is only one

unknown weighting parameter (Appendix A).

4.2. The case of ten unknown weighting parameters

The simulation of data was carried out in the same way as in

the two-parameter case, but for only four values of Re. At the

same time, the sample size was increased to 1024, giving rise to

a total of 4 � 1024 data sets.
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Table 1
Tests with simulated data partitioned into one restraint and nine X-ray
bins (the case of ten unknown covariance parameters); s.u.s multiplied by
103 are given in parentheses.

Estimated magnitudes

Re (%) p E�~upju�=up �D� ~upju��1=2=up E�Z1=2
pp ju�=up

4 0 1.007 (6) 0.176 (4) 0.177 (1)
1 0.999 (6) 0.176 (4) 0.173 (1)

. . .
9 1.000 (5) 0.150 (3) 0.147 (1)

8 0 1.007 (7) 0.214 (5) 0.211 (1)
1 0.998 (5) 0.172 (4) 0.168 (1)

. . .
9 0.999 (5) 0.148 (3) 0.146 (1)

12 0 1.008 (8) 0.241 (5) 0.241 (2)
1 1.000 (5) 0.165 (4) 0.165 (1)

. . .
9 0.999 (5) 0.149 (3) 0.146 (1)

16 0 1.018 (9) 0.273 (6) 0.271 (2)
1 0.994 (5) 0.162 (4) 0.162 (1)

. . .
9 1.000 (5) 0.144 (3) 0.145 (1)
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At the re®nement stage, the simulated X-ray data were

partitioned into three resolution shells containing equal

numbers of re¯ections and each resolution shell was

partitioned into three bins according to the value of f(x).

Equation (15) has been solved with respect to unknown

u = (u0, . . . , u9)T for the above 4 � 1024 data sets.

As a result, we have samples of size 1024 drawn from

the random vector ~u and the random matrix Z for four

values of Re. The expected value E� ~up|u) and variance

D� ~up|u) of the pth component of the random vector ~u and

the expected value E(Z1=2
pp |u) of the square root of the

pth diagonal component of the matrix Z have been

estimated for four values of Re and for p = 0, 1, . . . , 9 by

appropriate sample means and sample variances. Table 1

represents these estimates and their s.u.s (the s.u. in the

second column have been calculated assuming normal distri-

Figure 1
Dependence of estimators û (blue lines) and ~u (red lines) on Re in the case of two unknown covariance parameters: (a) û0, ~u0 and (b) û1/u1, ~u1/u1 for ten
of 125 data-set families where both û and ~u are continuous functions of Re; (c) the sample mean, the band of the s.u. of the sample mean and the s.u. band
for û0, ~u0 and (d) for û1/u1, ~u1/u1 corresponding to the above 125 data-set families; (e) û0, ~u0 and (f) û1/u1, ~u1/u1 for ®ve data series with discontinuous
behaviour of û.



bution of ~u). Sections of Table 1 correspond to different values

of Re.

The approximate equation (18) holds within 1±2 s.u.s,

con®rming that ~up and Zpp are practically unbiased estimators

for up and D( ~up|u), respectively. This is exactly what we would

expect for an almost asymptotic behaviour of a maximum-

likelihood estimator.

5. Effect of model imperfections

We studied the following cases: (i) an erroneous atomic model,

(ii) a case in which the distribution of observed structure

amplitudes strongly deviate from normal, although the mean

and covariance are modelled correctly, (ii) a case with un-

accounted random atoms with low occupancy (the models of

X-ray partitions of both mean and covariance are wrong) and

(iv) a case with strong correlations between interatomic

distances (a wrong model of the geometrical partition of

covariance). The goal was to understand the impact of

different imperfections of the model on the behaviour of the

statistic ~u0.

5.1. Wrong atomic model

The true structure is the same as described in x4 and the

data sets (observed values of both structure amplitudes and

distances) were generated in a similar way except for non-

essential variations in the sample size and the number of

tested values of Re. Four models have been re®ned against

these data sets: the model with both valines substituted with

threonines and three models with different combinations of

missing protein atoms. The results of these re®nements are

presented in Fig. 2. The mean crystallographic R factor (see

caption of Fig. 2) is larger than Re, as Re represents only

experimental errors.

The effect of wrong target distances (i.e. the effect of the

wrong residues in the re®ned model) on ~u0 is larger compared

with the effect of missing atoms. Had our model of structure-

amplitude errors included the errors arising from the missing

atoms, then the curve associated with missing atoms might

have been even closer to E( ~u0) = 1.

The errors in the atomic models caused a mixture of effects,

e.g. systematic discrepancies between the mean re®ned values

and the true values of both distances and structure amplitudes.

In the remaining tests we deal with simpler cases.

5.2. Influence of distribution of observed random vector

As long as �(�) and f(�) are correct functions, the expected

value of the ®rst derivative of M over u at u = utrue equals zero,

independent of the distribution of the components of the

random vector f o. As a result, ~u remains an almost unbiased

estimate of u even if the actual distribution of fo strongly

deviates from normal. This is the case in this simulation, where

the observed structure amplitudes f o are equal to ftrue + �true

or ftrueÿ �true with equal probability. The results are indicated

by a red line in Fig. 3. This test justi®es the simpli®ed like-

lihood function (9), which corresponds to the normal distri-

bution of f o.

5.3. Unaccounted random atoms

In the conventional crystallographic likelihood function, the

coordinates of unknown atoms are integrated out, assuming

that these atoms are distributed uniformly over the whole unit

cell. In the next simulation this assumption is satis®ed exactly:

64 O atoms with low occupancies were added to the true

crystal structure in each simulation at random positions to

generate observed structure amplitudes and in the re®ned

model these atoms were missing. In this test, the X-ray

measurements were assumed to be precise (Re = 0), but

occupancies of the missing atoms were varied to generate a

plot of E( ~u) against E(Rcryst) shown by the blue lines in Fig. 3.

With this test we may judge the improvement that could be

achieved had the model of structure-amplitude errors

Acta Cryst. (2003). D59, 1557±1566 Lebedev et al. � A likelihood approach to validation 1563

research papers

Figure 2
(a) The plots of E( ~u0) estimated by the sample means versus Re for a
model with Val2 and Val3 substituted with Thr (red) and for models with
the following missing atoms: CG1 of Val3 (blue), CG1 and CG2 of Val2
and Val3 (light blue), CD, OE1, OE2 and OXT of Gln5 (green). In these
four tests E(Rcryst) (%) estimated by the sample means grows from 7 to
16, from 9 to 17, from 20 to 25 and from 24 to 28, respectively.

Figure 3
The plots of E( ~u0) versus E(Rcryst) estimated by the sample means in the
cases where the following factors are present in simulations, but ignored
in the re®nements: (red) strongly non-normal distribution of the observed
structure amplitudes, (blue) unaccounted random atoms with low
occupancy and (light blue) strong correlations between interatomic
distances.
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included the errors arising from the missing atoms. Such a

correction of the model would remove the bias of ~u observed

in this test, which is signi®cant as it is comparable with the s.u.

of ~u (Fig. 1).

5.4. Neglect of correlation of geometrical errors

In reality, the variations in interatomic distances are

correlated. The following exaggerated simulation demon-

strates the possible impact of these correlations on ~u0 if they

are not accounted for (with off-diagonal elements of �0).

Suppose that atoms are distributed normally around their

position in an `average crystal', that the s.u.s of all atomic

coordinates are equal to 0.04 AÊ (roughly the s.u. of a distance

between neighbouring atoms) and that no correlation between

the coordinates occurs. Let the relevant distances in the

`average crystal' (the target distances in the re®nement) and

their variances be known (the distance variance is the doubled

variance of the atomic coordinate in this case). In such

circumstances the covariances of neighbouring distances are

large, but let them be unknown and ignored in the re®nement.

In contrast, let our model of the means and covariances of the

X-ray measurements used in the re®nement be correct. For a

sample of such random crystals we simulated X-ray data of

different quality (with different Re) and re®ned the atomic and

weighting parameters. The light-blue plot in Fig. 3 represents

the dependence of E( ~u0) on E(Rcryst) estimated using the

sample means.

In real cases the correlations of the distance variances will

be much smaller, as will their effect on ~u0. However, this effect

may be more pronounced in cases with large R factors or with

low-resolution X-ray data.

6. Tests with real data

We have chosen three small protein structures from the PDB,

making sure that the X-ray data vary in quality in terms of

observation-to-parameter ratio. We excluded low-resolution

re¯ections because we had no bulk-water correction. Table 2

contains some characteristics of the crystallographic models

and data (which differ slightly from the PDB data owing to the

resolution cutoff that we applied) and some results of our

re®nements, including the values of ~u0 and the standard

uncertainties of ~u0 estimated, according to the results of the

previous subsection, by Z
1=2
00 , the square root of the 0th diag-

onal component of the matrix Z.

The values of ~u have been obtained by solving the like-

lihood equation (15), alternating the re®nement of atomic

parameters with the re®nement of weighting parameters. The

latter re®nement is a time-consuming procedure, as we do not

use any approximation for �(u), but compute it exactly

according to (11). For the whole re®nement to converge, it

takes a total of 20±30 cycles of the re®nement of weights, each

cycle costing about 10 (1gk7, 1be7) or 30 (1jo8) min of CPU

time on a DEC Alpha Station.

Table 2 shows that u is signi®cantly less than one and thus

the validation equation (7) does not hold. Such an effect is

greatest when the observation-to-parameter ratio is lowest, as

is the case for data set 1be7. This could be because of the

temperature factors, which were held at their PDB values. The

tests with simulated data show that lack of off-diagonal terms

in the geometrical partition of the covariance matrix could

also contribute to depression of the ~u0 value. Much more

experience with real data sets will be needed to learn more

about the effects of different error sources on ~u0.

In the case of poorest observation-to-parameter ratio

(1be7), the r.m.s. deviation of restrained distances from

dictionary values becomes very small. This is the boundary

case, where the experimental information about the bond

lengths is weak compared with the prior knowledge. In this

case the automated (marginal likelihood) weighting suggests

the relative weights of X-ray and geometry to be such that we

are rather dealing with constrained re®nement.

7. Discussion

We have compared two estimators for weighting parameters.

In the linear, normal case the estimator û is a partition of the

maximum-likelihood estimator (x̂, û), the likelihood function

corresponding to the probability distribution of the random

vector f o given the vector of atomic parameters x and the

vector of weighting parameters u. The estimator ~u is a

maximum-likelihood estimator itself, the likelihood function

Table 2
Re®nements of three small protein crystal structures.

X-ray data below 5 AÊ resolution are disregarded and the remainder are
partitioned into 25 bins (®ve resolution bins, each containing ®ve intensity
bins) each with an approximately equal number of re¯ections. The s.u.s
multiplied by 102 are given in parentheses. The results of these re®nements
and control re®nements with 9 � 9 bins differ insigni®cantly.

PDB code 1gk7 1jo8 1be7

No. of atoms (total) 375 649 459
No. of atoms (anisotropic) 375 649 0
No. of re®ned atomic parameters² 1127 1949 1378
No. of re¯ections (total) 11140 13436 5833
No. of re¯ections (working set) 10690 12766 5569
No. of re¯ections (free set) 450 670 264
No. of restraints 796 1219 1021
No. of observations 11486 13985 6590
High-resolution limit (AÊ ) 1.40 1.30 1.65
Observation-to-parameter ratio 10.1 7.1 4.8
Model from PDB

Rcryst (%) 21.5 15.7 17.4
Rfree (%) 24.1 19.9 19.9
R.m.s. deviations from ideal values

Bond distances (AÊ ) 0.021 0.011 0.011
Angle distances (AÊ ) 0.036 0.027 0.024
All restrained distances (AÊ ) 0.030 0.022 0.020

Average weighted geometrical residual 0.88 0.40 0.40
Model re®ned with optimized weights

Rcryst (%) 21.0 14.9 17.3
Rfree (%) 24.8 20.2 19.9
R.m.s. deviations from ideal values

Bond distances (AÊ ) 0.012 0.007 0.004
Angle distances (AÊ ) 0.024 0.019 0.009
All restrained distances (AÊ ) 0.020 0.015 0.008

Average weighted geometrical residual 0.34 0.18 0.05
~u0 and (Z1=2

00 � 102) 0.73 (8) 0.41 (3) 0.23 (4)

² Number of atomic coordinates plus two overall scaling parameters.



corresponding to the probability distribution of the random

vector f o given only the vector of weighting parameters u. A

comparison of the observation-to-parameter ratio of the two

estimators suggests that, in contrast to û, the behaviour of ~u is

likely to approach the asymptotic behaviour of maximum-

likelihood estimators.

The difference between û and ~u arises from the second term

in (10). The use of this term (or, preferably, its approximation)

may be required to reduce the bias to an acceptable level if the

method of maximum likelihood is used for estimating both

atomic and weighting parameters. The estimator û (Fig. 1)

gives a clear illustration of this point, exhibiting the case when

this term is totally disregarded.

The numerical tests presented in this paper correspond to a

non-linear and non-normal case, resembling the major

features of the usual model of a protein crystal structure.

Thus, the estimator ~u is not exactly a likelihood estimator.

Nevertheless, the properties of this estimator (see Fig. 1 and

Table 1) are almost those of a maximum-likelihood estimator,

suggesting that the assumptions of linearity and normality are

acceptable. Additional direct tests with the linearized problem

give results that are almost indistinguishable from those listed

in Table 1.

In the restrained macromolecular re®nement it is assumed

that the dictionary contains correct values of interatomic

distances and their variances and that correlations between

distances is negligible. In this case, we expect ~u0 ' 1 within its

uncertainty, provided that the errors in the X-ray term are

modelled correctly and that all re®ned atomic parameters and

all restraints are present in @f=@x in the second term in (10).

The latter condition is not satis®ed in our tests with real data,

where we disregard the re®nement of B factors. Therefore, we

were not surprised to observe ~u0 < 1 in these tests. This effect

may partially be a consequence of the neglected off-diagonal

terms in the geometrical partition of the covariance matrix, as

shown by tests with simulated data.

If the models of errors in both geometry and X-ray terms

are correct, then the marginal likelihood technique presented

in this paper enables the re®nement of weighting parameters

and the assessment of the quality of the re®ned structure from

the scale factor of the geometrical variances, ~u0, whose

expected value is unity.

8. Further work

We have two immediate aims on the path toward a practical

implementation of the maximum-likelihood method to

determination of weights for macromolecular re®nement.

Firstly, we need to incorporate the derivatives of structure

amplitudes with respect to atomic temperature factors into the

matrix @f=@x and add extra partitions to f o, f(x) and � in order

to describe restraints on temperature factors of neighbouring

atoms. Secondly, we need to test different approximations of

the second term in (10) in order to effect a compromise

between accuracy and ef®ciency in the re®nement algorithm.

There could be many approaches to the above tasks and the

validation equation E( ~u0|u) ' 1 could help us to detect better

solutions.

The estimator ~u can be further improved by using a like-

lihood function corresponding to a more realistic distribution

law of the observed random vector. In this case, the quadratic

approximation of L(x, u) with respect to x could be used in the

integration in (2).

APPENDIX A
A1. The case of one unknown weighting parameter

In the special case of the covariance problem in (3) and (4),

where f o = (x1, x2, . . . , xn)T, f(x) = (x, x, . . . , x)T, u = u0 and �0

is the unit matrix, (9) becomes

L�x; u� � ÿ 1

2u

Pn
i�1

�xi ÿ x�2 ÿ n

2
ln�u� �24�

and (3) results in

E�sju� � ��nÿ 1�=n�u; �25�
where

s � 1

n

Pn
i�1

�xi�2 ÿ
1

n

Pn
i�1

xi

� �2

: �26�

In this case (x1, x2, . . . , xN)T is a sample of size n drawn from a

random variable with the mean x and with variance u.

In this case,

L�t�u�; u� � ÿ ns

2u
ÿ n ln�u�

2
�27�

and

M�u� � ÿ ns

2u
ÿ n ln�u�

2
� ln�u�

2
ÿ ln�n�

2
�28�

and (16) and (15) have analytical solutions given by

û � s �29�
and

~u � �n=�nÿ 1��s; �30�
respectively. Therefore,

E�ûju� � ��nÿ 1�=n� u �31�
and

E� ~uju� � u: �32�
In other words, û and ~u are non-corrected and corrected

sample variances and therefore are biased and unbiased esti-

mates of u, respectively.

The third and the fourth terms in (28) arise from

ln[det�(u)] in (10) and it is the third term that performs the

bias removal.

This situation also appertains to the case of one unknown

weighting parameter, general linear vector-function f(x) and

general matrix �0.
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